
PHASE-BASED GNSS DATA PROCESSING (PPP) WITH THE GPSTk.

Salazar, D., Sanz-Subirana, J., and Hernandez-Pajares, M.
Grupo de Astronomia y Geomatica (gAGE)
Universitat Politecnica de Catalunya
08034 Barcelona
Spain
Dagoberto.Jose.Salazar@upc.edu

Keywords: PPP GNSS data processing software GPSTk.

Abstract

The objective of this work is to show some of the advances made by the ’GPS Toolkit’ (GPSTk) project
since the past “VII Semana Geomatica”, focusing in the data management strategy called ’GNSS Data
Structures’ (GDS) and its associated data processing paradigm.

The GDS allow for a clean, simple-to-read, simple-to-use software code that speeds up development and
minimizes errors. Therefore, the geomatic researchers have a set of powerful but flexible tools at their
disposal with which they can try novel approaches without devoting much time to data-management issues.

The methodology to be used is to briefly describe the GDS paradigm, and to show how the different GNSS
data ‘processing objects’ may be combined. The flexibility of this approach is then used to easily develop a
fully working “Precise Point Positioning” (PPP) data processing chain, whose results favourably compare
with other PPP-enabled software suites.

1 Introduction

The ”GPS Toolkit” (GPSTk) project is an advanced GNSS Open Source Software (GOSS) suite initiated
by the Applied Research Laboratories of the University of Texas (ARL:UT), aiming to provide a world
class GNSS library computing suite to the satellite navigation community. One of its main goals is “to free
researchers to focus on research, not lower level coding” [1].

Currently it is actively maintained by more than a dozen developers around the world using the Internet
as communication medium. Development facilities are provided by the popular SourceForge open source
application repository.

The initial code of the GPSTk was released in summer 2004 and presented at the ION-GNSS-2004 [2],
and its functionality has been continuously improving. A very brief list of the tools provided by the
GPSTk includes: Handling of observation data and ephemeris in RINEX and SP3 formats, antenna data
in Antex format, mathematical, statistical, Matrix and Vector algorithms, time handling and conversions,
ionospheric and tropospheric models, cycle slip detection and correction, solid tides, ocean loading and pole
tides models, etc.

As a typical Open Source project, it is open to any researcher or institution because it is released under
the GNU LGPL license, which allows freedom to develop both commercial and non-commercial software.

GPSTk is highly platform-independent because it uses ANSI C++. It is reported to run on operative
systems like Linux, Solaris, AIX, MS Windows and Mac OS X. It may be compiled using several free and
commercial compilers, both in 32 bits and 64 bits platforms. Also, some parts of it are reported to run in
platforms such as the Nokia 770 Internet Tablet and the Gumstix line of full function minicomputers [3].

The GPSTk software suite consists of a core library and extra applications. The library provides several
functions that solve processing problems associated with GNSS (for instance, using RINEX files) and is
the basis for more advanced applications distributed as part of the GPSTk suite. This work focus in
library provisions to write clean, simple-to-read, simple-to-use software code that speeds up development

and minimizes errors, enabling at the same time to implement “Precise Point Positioning” processing [4].

2 GNSS Data Structures approach and processing paradigm

After developing the basic code-based GNSS data processing, and starting to add phase-based capabilities
to the GPSTk, several project developers came to the conclusion that some kind of hierarchy of data
structures should be added in order to easily cope with frequent data management situations that were
very difficult to deal with when using just vectors and matrices.

For instance, let’s consider that the typical GNSS data post-processing starts reading data from Rinex files.
In case this file is from observations, apart from C1, L1, etc, the programmer must take care of metadata
such as epoch and cycle slip receiver flags. If the file contains ephemeris, these must be properly stored
and organized.

In the following processing steps, a lot of extra information must be computed from the original data: Ob-
servable combinations, satellite’s arc numbers, elevation, azimuth, relativistic, tropospheric and ionospheric
corrections, wind-up effects and antenna phase center variations are just a few.

Besides, all this extra information must be properly catalogued and cross-referenced according to, for
instance satellite, receiver, data type and epoch each data piece is related to.

Writing software that appropriately keeps track of all these relationships is no easy task, and the ensuing
complexity makes it very difficult to debug, maintain, and enhance.

As an answer to these data management issues, a new and flexible set of data structures, called the ’GNSS
Data Structures’ (GDS) were added to the GPSTk.

These structures hold several kinds of GNSS-related data, properly indexed by station, epoch, satellite and
type, and store them efficiently. In this way, both the data and corresponding metadata is preserved, and
data management issues are properly addressed. Details about the GDS design and implementation may
be found on [5], as well as in the GPSTk project website [1].

In summary, GDS take advantage of the observation that several types of GNSS-related data structures
share some common characteristics, and thence they can be modelled in an unified way, creating structures
that index each data value with four different indexes. Those four indexes are implemented in the GPSTk
as C++ classes SourceID, SatID, TypeID, and DayTime.

Objects associated with these classes provide the GNSS programmer with a large set of methods to work
with them in an easy way. Please refer to GPSTk Application Programming Interface (API) document for
further details [6].

Apart from the GDS themselves, a “GDS processing paradigm” was also developed, where GNSS data
processing becomes like an ’assembly line’, and the GDS are treated like ’white boxes’ that ’flow’ from one
’workstation’ to the next in this ’assembly line’.

It is important to note here that most of the GDS-related classes presented in this work currently are only
available in the development branch of the GPSTk. Please follow the instructions in the GPSTk website
to download this branch.

3 Some simple GDS examples

In order to quickly harness the power of this approach, some simple examples are presented. In the first
one, we’ll just extract a single epoch worth of data out of a Rinex observation file and get that data into a
GDS:

Line #1 declares an object of class RinexObsStream, which is used to handle Rinex observation files. That
object receives in this case the name of rinexFile, and will take care of ‘ebre0300.02o’ Rinex file.

1 RinexObsStream rinexFile("ebre0300.02o");

2 gnssRinex gpsData;

3 rinexFile >> gpsData;

On the other hand, line #2 declares an object of class gnssRinex, which is used a very handy GNSS Data
Structure. Our data will be stored in this object, which will be called gpsData.

Finally, line # 3 does the real work: It will date one epoch of data out of rinexFile (file ‘ebre0300.02o;’,
indeed), and will pour it into gpsData;. No more code is needed for this action, and line # 3 is referred to
as the “processing line”.

Please note how the C++ operator >> is used to convey the idea that data “flows” out of the Rinex file
into the GDS “box” that will carry it around.

The statement rinexFile >> gpsData; has the additional property that it is evaluated as TRUE if operation
is completed without problems, and as FALSE otherwise (for instance, when end of Rinex file is reached).

The aforementioned property allows us to slightly modify the former example to get a much more useful
behavior:

1 RinexObsStream rinexFile("ebre0300.02o");

2 gnssRinex gpsData;

3 while(rinexFile >> gpsData) {

... your GNSS data processing code here ...

4 }

In this case the while loop will repeat itself until end of Rinex file is reached, and in each repetition a single
epoch data set of Rinex observations is encapsulated into gpsData, and is fully available to the researcher
to process it.

3.1 Code-processing example

Now a code-processing example will be presented. For space reasons most of the initialization phase is
skipped, so you must refer to GPSTk API to get the fine details. Also, the GPSTk provides carefully
explained examples: Look at “example6.cpp” and “example7.cpp” in “examples” directory for code-based
processing with GDS and the GPSTk.

We will start the example with the lines handling ephemeris data:

1 RinexNavStream rnavin("bahr1620.04n");

2 RinexNavHeader rNavHeader;

3 rnavin >> rNavHeader;

4 IonoModel ioModel;

5 ioModel.setModel(rNavHeader.ionAlpha, rNavHeader.ionBeta);

6 IonoModelStore ionoStore;

7 ionoStore.addIonoModel(DayTime::BEGINNING_OF_TIME, ioModel);

8 RinexNavData rNavData;

9 GPSEphemerisStore bceStore;

10 while (rnavin >> rNavData) {

11 bceStore.addEphemeris(rNavData);

12 }

Lines #1 to #2 declare objects to take care of ephemeris Rinex files and associated header. Line #3
then reads the header and store it. Please remember that Klobuchar ionospheric coefficients are stores in
ephemeris Rinex header, so this step is important for lines #4 to #7.

The first two of them then declare an “ionospheric model” object (IonoModel) and fill it with Klobuchar
coefficients, and after that declare a ionospheric model store (ionoStore) and push in the previously defined
model. Please note that this approach allows to store models for multiple days.

After that, the ephemeris data is read and stored in a proper object, which is filled with all available
ephemeris data, one epoch at a time, in a way similar as was already explained for observation data.

13 Position nominalPos(3633909.1016, 4425275.5033, 2799861.2736);

14 MOPSTropModel mopsTM(nominalPos.getAltitude(),

nominalPos.getGeodeticLatitude(),

162);

15 ModelObs gpsModel(nominalPos,

ionoStore,

mopsTM,

bceStore,

TypeID::C1);

16 SolverLMS solver;

17 RinexObsStream rinexFile("ebre0300.02o");

18 gnssRinex gpsData;

Line #13 declares the nominal position of receiver, lines #14 setup a tropospheric model (there are several
available), and line #15 then takes care of a very interesting object: A “modeler”.

This “modeler” object (gpsModel) takes as input the nominal receiver position, ionospheric and tropo-
spheric models, ephemeris data and type of observable it will work with, and will carry up the tasks related
with GPS data modelling, computing all the delays defined by the GPS standards and using them to com-
pute the prefit residuals and geometric coefficients that will later be used by the solver. All this wealth of
information will be inserted in the GDS at due time.

Then, line #14 declares the “solver”, the object in charge of building and solving the equation system. In
this case it uses a simple Least Mean Squares solving algorithm (there are others available).

The function of lines #17 and #18 was already described.

Finally, we present the final while loop that extracts Rinex data, runs the GPS model, solves the navigation
equations and prints the results:

19 while(rinexFile >> gpsData) {

20 gpsData >> gpsModel >> solver;

21 cout << solver.getSolution(TypeID::dx) << ’’ ’’;

22 cout << solver.getSolution(TypeID::dy) << ’’ ’’;

23 cout << solver.getSolution(TypeID::dz) << endl;

24 }

The real GNSS processing is done in line #20 (the “processing line”). In that line the epoch-worth of data
that was just taken out from rinexFile and poured into gpsData, is then pushed through gpsModel (to
generate the values associated with GPS signal modelling) and solver (to build and solve the navigation
equation system).

Some important remarks are in order: The first part of line #20 is gpsData >> gpsModel, which generates
the model. During that phase, all new data generated by the model is input to gpsData, appropriately
indexed.

For instance, the relativistic delay between receiver and satellite, let’s say, PRN17, is computed and stored

with all metadata needed to take it apart from relativistic delays from other satellites. This is done in an
automatic way and no user intervention nor coding is needed.

Also, if a given satellite is missing a critical piece of data (like ephemeris data, for example), it will be
deleted from the gpsData GDS to avoid problems further down in the data processing chain.

Additionally, the output of expression gpsData >> gpsModel is the original gpsData structure plus the
data generated by the gpsModel object. In this way, gpsData >> gpsModel becomes again gpsData, where
the new gpsData is a superset of the original.

In this way, the second part of line #20 then becomes gpsData >> solver, and solver; object will find
in gpsData all the information it needs to build and solve the navigation equation system.

This approach to GNSS data processing is called the “GDS processing paradigm”, where the GDS processing
becomes akin to how a car is built in a car factory. The GDS (like the car) “flows from one “workstation”
to the next, where in this particular case the “workstations” are represented by objects from “processing
classes” ModelObs and SolverLMS.

From the developer (and researcher) point of view, the GDS is just like a “box” (a “white box”, indeed)
that holds and automatically organizes all the information needed, in his only concern is to push this “box”
through all the “processing classes” he needs to.

This process, which may seem computationally complex and convoluted at first sight, is however efficiently
implemented using the C++ Standard Template Library (STL). A Rinex observation file (at 30 s data
rate) of a full day processed in this way takes less than 0.2 seconds in an average laptop PC with Linux 1.

Coming back to our code-based processing example, the final lines #21 to #23 just take care of printing
the solution to the screen, using the standard C++ cout printing object. Please take note of the handy
way to get solution values out of solver objects, which represents the consistent way to refer to data types
along all the GDS processing paradigm.

4 PPP data processing accessory classes

PPP implementation is a complex task, and issues like wind-up effect, solid, oceanic and polar tides,
antenna phase centers, etc. must be taken into account. Also, precise satellite orbits and clocks are used
in PPP, but these products are usually provided each 900 s, while observations are usually provided each
30 s. Thence, some time management issues also arise.

We will start presenting some accessory classes that ease these complex issues. However, take into account
that, again, most initialization details are skipped. For complete phase-based processing implementations
please read “example8.cpp”, “example9.cpp” and “example10.cpp” in the GPSTk development repository.
The GPSTk API is also a mandatory read.

4.1 Handling configuration files

Given the potentially high number of PPP processing parameters involved, reading configuration files is
an important ability in order to avoid recompilation of source code each time we want to change a given
parameter.

The GPSTk provides ConfDataReader, a powerful class to parse and manage configuration data files. It
supports multiple sections, variable descriptions and value descriptions (such as units), and a wide range
of variable types.

Given a configuration file named “configuration-file.txt”, whose content is:

1The former figure disregards output time. Redirecting output to a file in the laptop hard disk raises the overall processing

time to about 0.7 seconds.

Default section

tolerance, allowed difference between time stamps = 1.5, secs

[BELL]

reference = TRUE

Then a typical way to use this class follows:

1 ConfDataReader confRead;

2 confRead.open("configuration-file.txt");

3 double tolerance = confRead.getValueAsDouble("tolerance");

4 cout << confRead.getVariableDescription("tolerance") << endl;

5 cout << confRead.getValueDescription("tolerance") << endl;

6 bool bellRef = confRead.getValueAsBoolean("reference", "BELL"));

Lines #1 and #2 declare the ConfDataReader object and open the configuration file. Line #3 declares a
double precision variable called tolerance and feeds it with the value read from configuration file.

Then, line #4 prints the description of variable tolerance (the phrase “allowed difference between time
stamps”) and line #5 prints the description of the corresponding value (in this case the word “secs”).

4.2 Handling Antex files

Starting from GPS week #1400 (Nov 5th, 2006), the “International GNSS Service” (IGS) adopted the use
of absolute antenna phase center values, dropping the “relative” values used so far [7].

These values are now stored in “Antex” format files, and the GPSTk provides the AntexReader class to
parse these files, and the Antenna class to manage antenna data.

Then, these objects should be fed to others from processing classes that will take care of applying the corre-
sponding corrections: CorrectObservables to manage receiver antenna corrections, and ComputeSatPCenter

to handle satellite antenna corrections.

It follows a typical usage:

1 AntexReader antexread;

2 antexread.open("igs05.atx");

3 ComputeSatPCenter svPcenter(nominalPos);

4 svPcenter.setAntexReader(antexReader);

5 Antenna rXAntenna = antexread.getAntenna("AOAD/M_T NONE");

6 CorrectObservables corr;

7 corr.setAntenna(rXAntenna);

4.3 Computing tidal values

An important part of PPP modelling are the estimation of tidal effects caused by solid tides, ocean loading
tides and pole movement-induced tides.

The GPSTk supplies several classes to manage tidal effects, providing the respective correction vectors in
an unified format (class Triple). These vectors must then be fed to a CorrectObservables object to be
added to the other corrections (like the aforementioned antenna phase center variations):

In this code snippet, line #1 declares a time-handling object called epoch (from DayTime class) initialized

1 DayTime epoch(2008, 08, 12, 22, 00, 0.0);

2 SolidTides solid;

3 OceanLoading ocean("OCEAN-GOT00.dat");

4 PoleTides pole(0.02094, 0.42728);

5 Triple tides = solid.getSolidTide(epoch, nominalPos) +

ocean.getOceanLoading("ONSA", epoch) +

pole.getPoleTide(epoch, nominalPos));

6 CorrectObservables corr;

7 corr.setExtraBiases(tides);

at 22:00:00 hours of August 12th, 2008. Then, the tides-handling objects are declared in lines #2 through
#4. Note that OceanLoading objects need to load ocean loading parameters files (provided by [8]), and
that PoleTides objects need x and y pole displacement parameters, in arcseconds (supplied by IGS’ ERP
files).

Then, line #5 computes a Triple which is a combination of the computed tidal values. We end declaring
a CorrectObservables object and feeding it with the total tidal correction.

4.4 GPSTk exception handling mechanism and its uses

In software as complex as GNSS data processing software it is unavoidable to find many situations that
impair proper operation. Issues as invalid values, time desynchronization, singular matrices and many
others are common, and should be adequately handled in running time.

In order to manage these events, the GPSTk provides a powerful and complete set of exception handling
classes, built upon the native C++ exception mechanism.

This approach is convenient and flexible, and may be extended to include other situations that, although
not being run-time errors, may benefit from the same approach.

Decimation in PPP is one of these situations. Remember that IGS precise satellite orbits and clocks are
typically provided each 900 s, while observations are given at 30 s intervals. It turns out that for accurate
cycle slip detection, it is convenient to process data at the highest possible rate, but that data must not be
feed to the solver except when accurate orbits and clocks are available.

Code bellow shows how this situation is approached in the GPSTk. Line #1 declares a Decimate object
configured to decimate data each 900 s, with a tolerance of 5 s, and according to values stored in the SP3
ephemeris handling object called SP3EphList.

Then, data is extracted from Rinex observation files with the typical while loop (between lines #2 and
#17), but now the processing line # 4 is enclosed in a try- catch block.

In this way, if data epoch is not a multiple of 900 s then object decimateData in line # 4 will issue an
“exception” (or more properly, a DecimateEpoch exception), effectively halting further processing of line
#4. Such DecimateEpoch exception is then “caught” by catch block in lines # 6 to #8, that just tell the
program to continue with the next epoch processing. Decimation is so achieved in an effective, efficient
and compact way.

Besides, if processing line #4 encounters any other GPSTk-defined problem, the catch block between lines
#9 and #12 takes over, printing an error message and continuing with next epoch processing.

Finally, any other unrecognized exception is handled by block # 13 to # 16, issuing a different message
and continuing processing.

1 Decimate decimateData(900.0, 5.0, SP3EphList.getInitialTime());

2 while(rinexFile >> gpsData) {

3 try {

4 gpsData >> ... >> decimateData >> ...

5 }

6 catch(DecimateEpoch& d) {

7 continue;

8 }

9 catch(Exception& e) {

10 cout <<"Exception at epoch: "<< epoch <<"; "<< e << endl;

11 continue;

12 }

13 catch(...) {

14 cout << "Unknown exception at epoch: " << epoch << endl;

15 continue;

16 }

17 }

5 PPP data processing code

After explaining the basic accessory classes, we are ready to present the core PPP processing code:

1 gpsData >> requireObs >> linear1 >> markCSLI >> markCSMW

2 >> markArc >> decimateData >> basicModel >> eclipsedSV

3 >> grDelay >> svPcenter >> corr >> windup

4 >> computeTropo >> linear2 >> pcFilter >> phaseAlign

5 >> linear3 >> baseChange >> cDOP >> pppSolver;

The GDS processing data chain is indeed a single C++ line, although in this case (for clarity sake) spans
from line #1 to line #5. Also, all this line must be enclosed within a while loop to process all available
epochs, and within a try - catch block to manage exceptions.

Several of these objects need initialization, but that part is omitted here. Again, please consult GPSTk
examples and API. Table 1 summarizes object names, classes they belong to, and purpose.

Particular mention deserves object pppSolver, belonging to SolverPPP class. This object is preconfigured
to solve the PPP equation system in a way consistent with [4]: Coordinates are treated as constants
(static), receiver clock is considered white noise, and vertical tropospheric effect is processed as a random
walk stochastic model.

Figure 1 plots the results for former PPP processing code applied to station MADR, May 27th., 2008. As
mentioned, the positioning strategy is the default one for SolverPPP objects: PPP with static coordinates.

These results are consistent with what is expected from these processing strategies, showing a small residual
bias in the “Up” coordinate of about 17 millimeters.

Those pre-assigned stochastic models may be tuned and even changed at will, given that they are objects
inheriting from general class StochasticModel. In this regard, a way to check how good GPSTk PPP
modelling is consists in treating coordinates as white noise (kinematic). The former is achieved during
initialization phase in a very simple way:

Now, pppSolver object will consider both coordinates and receiver clock as white noise stochastic variables,
while vertical tropospheric effect is still treated as a random walk process. The coordinates’ model has an
assigned sigma of 100.0 meters (see last part of line # 1).

Figure 2 presents the results for this type of processing, confirming the good quality of GPSTk model

OBJECT CLASS NAME PURPOSE

requireObs RequireObservables Check if required observations are present

linear1 ComputeLinear Compute linear combinations used to detect cycle slips

markCSLI LICSDetector2 Detect and mark cycle slips using LI combination

markCSMW MWCSDetector Detect and mark cycle slips using Melbourne-Wubbena combination

markArc SatArcMarker Keep track of satellite arcs

decimateData Decimate If not a multiple of 900 s, decimate

basicModel BasicModel Compute the basic components of a GNSS model

eclipsedSV EclipsedSatFilter Remove satellites in eclipse

grDelay GravitationalDelay Compute gravitational delay

svPcenter ComputeSatPCenter Compute the effect of satellite phase center

corr CorrectObservables Correct observables from tides, antenna phase center, etc.

windup ComputeWindUp Compute wind-up effect

computeTropo ComputeTropModel Compute tropospheric effects

linear2 ComputeLinear Compute ionosphere-free combinations PC and LC

pcFilter SimpleFilter Filter out spurious data in PC combination

phaseAlign PhaseCodeAlignment Align phases with codes

linear3 ComputeLinear Compute code and phase prefit residuals

baseChange XYZ2NEU Prepare data to use North-East-UP reference frame

cDOP ComputeDOP Compute DOP figures

pppSolver SolverPPP Solve equations with a Kalman filter configured in PPP mode

Table 1: PPP processing objects and classes.

Figure 1: Static PPP positioning error regarding IGS nominal. MADR station, 2008/05/27.

1 WhiteNoiseModel newCoordinatesModel(100.0);

2 pppSolver.setCoordinatesModel(&newCoordinatesModel);

(results are consistently within +/- 10 cm from nominal value).

5.1 Forward-Backward Kalman Filter

Previous results were obtained with a Kalman filter that only used information from the “past”. However,
PPP is done in post-process, and thence the filter could also use information from the “future” as well
from the past. This is usually done running the filter in forward-backward mode, where the filter takes
advantage of ambiguity convergence achieved in the previous forwards run, and uses that information for
the next backwards run. This process may be iterated at will.

An object of class SolverPPPFB is used to achieve this. This class encapsulates SolverPPP class functionality
and adds a data management and storage layer to handle the whole process. From the user’s point of view,
the main change is to replace SolverPPP object (pppSolver) with a new SolverPPPFB object (fbpppSolver,
for instance) inside the while loop reading and processing RINEX data file.

After the first forwards processing is done (and data is internally indexed and stored), it is simply a matter
of telling fbpppSolver object how many forward-backward cycles we want it to “re-process”.

For instance, to carry out 4 forward-backward additional cycles:

fbpppSolver.ReProcess(4);

After that, one last forwards processing is needed to get the time-indexed solutions out of fbpppSolver.

Please note that in this case the solution is given in a NEU reference frame instead of ECEF. To achieve

Figure 2: Kinematic PPP positioning error regarding IGS nominal. MADR station, 2008/05/27.

1 while(fbpppSolver.LastProcess(gpsData)) {

2 cout << fbpppSolver.getSolution(TypeID::dLat) << " ";

3 cout << fbpppSolver.getSolution(TypeID::dLon) << " ";

4 cout << fbpppSolver.getSolution(TypeID::dU) << " ";

5 }

that we must tell so to the solver object when declaring it, and insert a XYZ2NEU object in the processing
chain in order to compute the appropriate geometric matrix coefficients.

This forward-backward processing is particularly useful to get the zenith path delay estimation (zpd) for
the whole processed day. Figure 3 shows the remarkable match achieved when compared with the official,
combined IGS zpd.

6 Conclusions

This work has shown how the open source “GPS Toolkit” (GPSTk), coupled with an innovative and flexible
GNSS data management strategy called “GDS paradigm”, makes it possible to easily develop GNSS data
processing techniques, including high accuracy carrier-phase positioning techniques such as Precise Point
Positioning (PPP).

Besides, the GPSTk provides classes to implement non-trivial algorithms such as tides modelling (solid,
ocean and pole-related), advanced exception handling, configuration files reading, and full Antex file sup-
port, among others.

The resulting code of using the GDS and its processing paradigm is remarkably clean, compact and easy
to follow, yielding better code maintainability and supporting the overall GPSTk design goal of “freeing
researchers to focus on research”.

Figure 3: Zenith path delay. MADR station, 2008/05/27.

The GPSTk is actively maintained, and there are several lines of work being currently pursued, among
them: RINEX version 3 handling, more carrier phase-based processing classes (including RTK), IONEX files
processing, robust outlier detection, etc. We warmly invite the GNSS community to join us as developers,
testers or plain users, and to take advantage of our code base.

References

[1] GPSTk Project Website. http://www.gpstk.org.

[2] B. Tolman et al., 2004. “The GPS Toolkit – Open Source GPS Software”. Proceedings 17th In-
ternational Technical Meeting of the Satellite Division of the ION (ION GNSS 2004). Long Beach,
California.

[3] D. Salazar, M. Hernandez-Pajares, J.M Juan and J. Sanz., 2006. “Rapid Open Source GPS software
development for modern embedded systems: Using the GPSTk with the Gumstix”. 3rd. ESA Workshop
on Satellite Navigation User Equipment Technologies NAVITEC ’2006. Noordwijk, The Netherlands.

[4] J. Kouba, and P. Heroux., 2001. “Precise Point Positioning Using IGS Orbit and Clock Products”.
GPS Solutions. Vol. 5, pp. 2-28.

[5] D. Salazar, M. Hernandez-Pajares, J.M Juan and J. Sanz., 2008. “High accuracy positioning using
carrier-phases with the open source GPSTk software”. 4th. ESA Workshop on Satellite Navigation
User Equipment Technologies NAVITEC 2008. Noordwijk. The Netherlands.

[6] GPS Toolkit Software Library Documentation. http://www.gpstk.org/doxygen/.

[7] IGSMAIL-5272. “Switch the absolute antanne model within the IGS.”
http://igscb.jpl.nasa.gov/mail/igsmail/2005/msg00193.html.

[8] Ocean tide loading provider. http://www.oso.chalmers.se/~loading/.

