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We present the results of a test study on treeiepetassification in an agricultural area fromitip
aerial images and lidar. The objective was to wligtish between three species that are farmed iartdee
(olive tree, almond tree and carob tree) in ordemobtain an efficient technique for reviewing and
updating the LPIS (Land Parcel Information Systesiablished by Council regulation (EC) 1782/2003
to check area-based subsidies on agriculture; ehecies that are present were not consideredtaDigi
aerial photographs with 25 cm pixel were taken witAMC camera in winter and in summer. Lidar data
was acquired with an Optech ALTM 3025 in winter ahe point density was 1 pointnindividual trees
were detected from lidar data using the hydrog@aghinethod. Crown area, tree height, lidar intgnsit
and other parameters describing the structure eftrbes were derived from lidar data and for each
parameter a raster image was created assigningathe parameter value to every pixel in the crown of
each detected tree. These images derived fromtid@ther with the 4 channel images (R, G, B aRjl |
from both two epochs were the input for a serieslpéct classification tests done with eCognitiorage
analysis software. In all the tests the object sagation was based on the tree heights image derive
from lidar. A special DSM model including trees wasiployed in the orthorectification of the DMC
images. The best classification results have bégaireed using only the orthorectified DMC images at
reduced resolution of 1 m after the tree segmemtdtom lidar data. Acceptable results have alsenbe
obtained from lidar data only.

Introduction

In order to check area-based subsidies on agrieylthe Agriculture Department of our autonomous

region asked us to study an efficient technique riviewing and updating the LPIS (Land Parcel

Information System) established by Council regolaEC) 1782/2003. Most specifically, our goal was

to find a method to distinguish and mapping thmee tspecies: olive, almond and carob using remote
sensing techniques because the conventional inweistéime consuming and expensive (Viau, 2005). It

is common that different species appear mixed énshme stand following different patterns, but only

these three species were of interest in this study.

The study area (figure 1) is located south-wesVitd-rodona (60 km SW of Barcelona) and has an
extension of 6 km x 6 km. It is a dry Mediterrangagion where most important crops are vineyards,
olive trees, carob trees and almond trees.

Figure 1. Location of study area

Data

Multitemporal digital image data were acquired otrer study area with the Cessna Caravan planesof th
Institut Cartografic de Catalunya (ICC). Two kind§ sensors were installed: the Digital Mapping
Camera (DMC) from Intergraph to record spectrahdand the lidar ALTM 3025 from Optech to obtain
structural data. All the flights were performedidgr2007.

The project area was covered with the DMC on Janii@f and on July 19 from 1500 m above ground
level, resulting in 70 virtual images for each dpothis corresponds to a pixel size of 15 cm of the



panchromatic channel and to 72 cm of the four lesstution spectral channels: red, green, blue aad n
infrared.

From DMC data two kinds of images were created uffeig2) combining 3 of the 4 colour channels
generating the true colour file (channels Blue,gBrand Red) and the IRC colour file (channels Green
Red and Infrared)
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Figure 2. True colour (VIS) images on top and IRG@ges on bottom. Winter images on the left and
summer images on the right. On top left image #i®otraining trees are shown: almond trees in blue,
carob in green and olive in yellow. .

After aerial triangulation, DMC images were resamopto 0.25, 0.5 and 1 m pixel sizes using bicubic
convolution (Figure 3).

Figure 3. Detail of teies with pixel sizeO#5, 0.5 and 1 m from left to right.

At the first stages of the joint processing of Di@ages and lidar data, it was noticed that thettcadhl
orthorectification of the images based on a barthdaTM was not accurate enough (Pala et al. 2001,
Pala & Arbiol, 2002). As the height of the treesi it been taken into account, the crowns appeared
shifted and there was a mismatch with the canopghbhenodel (CHM) and between images from



different epochs (Lee et al., 2006). The problens salved rectifying the images with a DSM including
tree models where each tree was represented asesatieed cylinder(see details further on). The
resulting image is not beautiful because black saeggpear next to each tree corresponding to the are
occluded by the tree but the agreement of the imagth the CHM and between them is better (figure 4

Figure 4. From left to right, orthoimage obtainedhwDTM, CHM and orthoimage obtained with DSM,
and boundary of one of the trees shown in yellow.

Point density 1 point /fn
The area was covered with 24 lidar strips obtamledg two flight [55int repetition rate25000 Hz
sessions, on January 17th and 19th. For each siripe the point
density was 0.5 pointsfbut, as the strip overlap was of 50%, tt
total point density was 1 pointfmParallel project strips were
crossed with two transversal strips over contrelds. On each of

Number of strips 24
Scan angle +11°
Swath 581 m

them, 40 points were measured with GPS/RTK wita@ruracy of | Strip overlap 50%

2 o0r3cm. Altitude (agl) 1495 m
Speed 130 knots

A least squares adjustment was performed to geteaation offset | Footprint 22 cm

for each lidar strip following the procedure deled in (Kornus & Table 1 Lidar parameters.

Ruiz, 2003). The observations that entered into d@bdgistment

were the differences between lidar ground pointsrassing areas and between strips and controlsfiel
There were a total of 24 strips, 2 control fieldasp3 test areas with different vegetal coverade T
corrections applied to the strips were elevatiofseté that ranged from 6.2 to 19.9 cm, all of them
positive (upwards). After this correction of systio errors, lidar points were classified into grdwand
non-ground points with TerraScan and TerraModetemfTerrasolid. No manual editing was performed
after the automatic classification. The accuracyhef resulting terrain model was checked with oint
measured with GPS/RTK in 3 tests areas with differeoverage. The elevation of the points was
compared to the elevation of a TIN model built frdidar points classified as ground (bare-earth TIN
model). The results of the checking with groundhtrare shown in Table 2:

Areal Area2 | Area3 Total
Coverage Olive trees| Vinyard Tennis couft
Approx. vegetation height (m) 1 0.5 0
# points 20 20 19 59
c (cm) 5.4 4.5 3.2 4.7
RMS (cm) 6.8 9.3 5.5 7.4
AverageAz (cm) 4.3 8.2 4.6 5.7

Table 2. Checking of bare-earth TIN modihwround truth in 3 test areas.

A digital terrain model (DTM) with 1 m grid step w@omputed by interpolation on the bare-earth TIN
model and a digital surface model (DSM) was congbditem all the lidar points taking for each gridlce
the elevation of the highest interior lidar poiatom the difference between the DSM and DTM a cgnop
height model (CHM) was computed that was used teafléndividual trees with the “hydrological”
method. It receives this name because standardo8lS$for hydrological analysis are employed toedet
trees (Hyyppa & Inkinen, 1999); in our case, ArtdliWorkstation. The CHM was smoothed with a



binomial 3x3 low pass filter and the sign of thegh¢és was changed. Each tree corresponded then to a
minimum in the reversed CHM. Each local minimumnk3icorresponds to one individual tree, its depth
is the tree height and the area that drains to siéhcorresponds to its crown. Most of the treethis
area are isolated and it was considered that aagindinishes when the height reached one thirthef
total tree height. In this way it was possible émgrate one image where all the pixels inside tbert of

one tree had the same value corresponding to igattaf that tree. In this model each tree is repnted

as a generalized cylinder. Each tree received guendentifier and one image of tree identifierswaéso
generated. In most of the cases, the automatidaligcted trees correspond to real trees, but soreeti
the crown of one tree has split them up into twd #rey had been considered two different treeshby t
automatic procedure. In all of the tests, the imsggmentation was performed using an image derived
from the CHM. We got this image where tree heigintscoded in one-byte pixels measuring the height i
20 cm units, i.e. one grey level corresponds tara0

Using the image of tree identifiers, the correspogdree identifier was assigned to each lidar paind,
after sorting points by tree identifier, a collectiof tree parameters was computed. Some of therarar
attempt to catch the structural information of tinéividual trees. The following parameters were
computed tree-wise: location coordinates, tree higigrown area, number of points and penetration
index. The location was computed as the averageeofidar point coordinates. The penetration intdex
the ratio between the number of points that reachedyround and the total number of points. Froen th
elevation of the points, it were computed the mimmand maximum, the mean, the standard deviation,
the coefficient of variation and the relative heiglercentiles (5, 10, 15, 20, 25, 30, 50, 75 ang 90
(Holmgren, 2003). The coefficient of variation lietratio between the standard deviation and thexroka

a variable. If N is the number of points in theaaté one tree crown, the height h of the p-perteiidi
defined as the elevation above ground of a hor@giane such that p*N/100 of the points belongimg
this tree lay below this plane. If H is the heigiitthe tree, h/H is the relative height of the eeitde.
From the lidar intensity, the mean, the standardatien and the coefficient of variation were cortgal

A raster image was created for each parameter rasgigto every pixel in the crown area, the
corresponding value to each tree (Figure 5).

Figure 5. From top to bottom and from left tohtigl 0, 35, 50 and 90-percentiles of the same area.

Along January 38 trees belonging to the speciéstefest (Figure 6) were measured. For each treast
recorded the specie, the location coordinatestapeand bottom height of the crown, the minimum and
maximum crown diameters and its pruning and hestfite. Stands with mixed species are common in the
area but there are also homogeneous stands. Agex taaining set was required, the boundarieslof 3
homogeneous stands were recognized (Figure 6)ratitis way it was possible to add more than 300
trees to the 38 field measured data set. Findiig, dollection of trees was divided into two indegent
sets: one to be used as the training set and ltee it be used as a test set to analyze the penfmerof

the method.

Field samples concentrate on a small region andltssification testing was restricted to a rectdag
area containing the field samples, with UTM-31N rcioates 358658-360456 easting and 4571900-
4573000 northing.



Fig. 6 Left, 38 field measured trees. Right: 3hdtawith homogeneous crops.
Olive trees, yellow; carob, green and almond, purpl

Comparison of lidar derived and field measured parameters

A comparison of field measured trees with lidarvkst parameters was done. Trees were identifiékden
CHM image after their coordinates. Field measunee theights were compared with lidar heights
directly. Figure 7a shows that lidar derived hesglite in good agreement with field-measured vabugs
dispersion is higher for almond trees. This is eidleus tree and, at the time of the lidar datawap
they had no leaves. Despite that, almonds were@etevith lidar data only.

Crown area was not directly measured on the fieldw® can estimate it assuming that the shapeeof th
crown projected on the ground is an ellipsis aral ilaximum and minimum crown diameters are the
major and minor axis. Agreement is worse for almémaegs. Lidar has a tendency to overestimate the
crown area for olive and carob trees (Figure 7b).
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Figure 7a. Tree height regression.
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Figure 7b. Crown area regression.

Olive trees and almond trees show a slightly laayea from lidar data that the real value. Tregfitei
was overestimated in 14 cases and underestimate@. ifihe crown area was overestimated in 21 cases
and underestimated in 14. What we expected wasré¢leeheight to be underestimated (Popescu et al.,
2004, Neesset & Bjerknes, 2001) because the lidapléag density was smaller than the lidar footprint
and it would be difficult to reach by chance theetop with the lidar beam. On the opposite, we etgae

the lidar to overestimate the crown area due tdidlae footprint size.

M ethodology
A fundamental problem to apply high resolution @igimagery to this kind of studies is that treevens

are composed of discrete pixels covering a rangespafctral values. Object-based image analysis
techniques as opposed to pixel-based softwarebeame solution (Chubey, 2006). In our study, image
objects corresponding to crowns were singled ouh wiCognition (Definiens Imaging, 2004). This
software provides a processing environment for enagalysis whose main characteristic is that the
analysis and classification is performed not onviiddial pixels but on previously generated groups o
neighbouring pixels called objects or segmentsa fiist step, named multiresolution segmentatios, th
image is divided into homogeneous regions based subset of variables selected by the user and on
several user-defined parameters affecting the sizectral and spatial homogeneity, and shape of the
resulting image objects. Once segmented the imtigepossible to

start the classification of these segments basedl set of variables Table 3. Segmentation parameters
selected by the user, using membership functiongnaximum

likelihood estimation. Ei'zxgl Scale f:&gfe Compactness
(cm)

After some testing, the idea of individualizing tleowns as 25 20 0.3 0.3

segments was accomplished using the tree heighedeefiom lidar 50 10 0.3 0.3

as the only variable in the segmentation procegstiher with the 100 10 03 03

parameters indicated in Table 3. With these sedtimgost of the
tree crowns were identified as one segment indepehdof its area (Figure 9).
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Figure 9. On the left: segmentation results basedthe vegetation heigh. On the right: segments
boundaries on the DMC image corresponding to theesarea.



A series of eCognition trials with different seiecis of variables was carried out to perform an
exhaustive analysis of the available data. There & different trials with different combination$
DMC data: with winter data only, with summer datdyoand multitemporal. Each of these groups was
analyzed at different pixel sizes: 0.25, 05 and ana also the spectral bands were grouped in 8rdift
ways: RGB, IRG and the four channels altogethgu(® 8). There were two runs with lidar variablas:

of them altogether and using percentiles only. lyathe combined use of lidar variables and DMCadat
was analyzed. However, in all of the tests, thegensegmentation was based only on the tree height.

25cm 50cm 100 cm

RGB
d1 IRG
(17.107) iReB
RGB
DMC d2 IRG
(19.7.07) IRGB
RGB
d1+d2 IRG IRB100d12
IRGB

Figure 8. Classification trials performed from DM&ta

For each eCognition project the classification stegre the following: Firstly, , all the segmentsrev
classified into three categories according the liegh variable: low vegetation (<26¢cm), trees (260
10m) and high objects (>10m). The thresholds wamsen to reject grass, powerlines and high trees in
forested areas. After that, and using the valughefariables selected in each trial for the trajrirees

as a reference, all of the tree segments wereifidasas olive, almond or carob trees accordinghtgr
values for the same variables, by nearest neighffigure 9). The performance of each classificaticas
analyzed with a contingency table, where the classsigned to the test set are compared to its true
category.

Results

One eCognition trial was done only with lidar petiles to analyze if they were useful to discrinting
species. Percentiles are an attempt to catchrihetwtal characteristics of the trees. In a fiest the nine
lidar-derived percentiles were considered and amigation analysis was performed to detect what of
them were the most explicative variables.. Reslitsw that the more variables are employed, thebett
the discrimination between species but taking atocount only the 3 best percentiles (p10, p15 &%) p
the results were close to those obtained with gllaBameters. However, according to the contingency
tables, the classification results (Table 4) weoerp or even very poor for almond trees. Probably
because almond trees had no leaves when lidar vdasaacquired and their structure could not be
appropriately defined by percentiles.

Olive |Carob| Almonfiotal Olive |Carob| Almonfiotal
Olive [79 (7816 (378 (60)[123 () | [olive [78 (77}14 (337 (57)[119 ()
Carob |5 (5)| 26 (6{9 (11) |36 () Carob |5 (5)] 24 (5/) (2) [30 ()
[Almond17 (17]1 (2) [14 (30)32 () [Almond18 (186 (12) [ 19 (40)42 (-)
Total |101 (-J43 (-) [47 () | 191 (6%) [Total [101 (-J43 () [47 () [ 191 (63)
9 percentiles 3-best percentiles (p10, p15 and p35)
Table 4 Contingency tables for percentiles datg ¢mércentages into paretheses).

Taking into account all the 15 lidar derived parter® the classification performance improved a lot
olive trees were correctly identified in 92% of tteses but for the other species the success aatéess
than 70%. Discrimination between species reactethéximum when 10 variables were used. Rejected
parameters in the optimization step were the péitesrp5, p75 and p90, the penetration coefficamd

the coefficient of variation of the elevation (Teld). Results were good enough for olive trees,dvew

for almond trees, results were poor.
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IEigure 9. On the left, color infrared images. Oa frght, classification results corresponding t® o
resolution, multitemporal data and 4 spectral ce&inOlives in yellow, carob in green, almond in
purple, forest trees and powerlines in red, grasisggound in grey.

Olive |Carob| Almonffotal Olive |Carob] Aimonffotal
Olive [93 (92)16 (37) 14 (30) 123 (-} [Olive |90 (89)L6 (37) 14 (30) 120 ( -
Carob | 7 (74p5(58) 2(4) 34 (-] [Carob| 8(dp5(58) 1 (2] 34(-
Almond 1 (1) 2 (5]31(66) 34 (-] |Almond 3 (3] 2(5)]32(68) 37 (-
Total |101 () 43 (-] 47 (-J191 (78) [Total [101 () 43 (-] 47 (-J191 (77
15 lidar-derived parameters 10-best lidar-derived parameters
Table 5 Contingency tables for lidar-derived parrse(percentages into paretheses).

The classification performance improved when matiporal images from DMC were incorporated to
the lidar data (10 lidar variables),, especiallytwthe combination of infrared, green and red chénof
each epoch (Table 6). The improvement is largercéwob (from 58% to 74%) and almond trees (from
68% to 98%) and smaller for olive trees (from 82901%) because the good results achieved with lidar
data in this case left little room for additionadprovement.

Olive |Carob|[ AimonfTotal
Olive [92 (9111 (26)1 (2) [104 ()
Carob |9 (9) [ 32 (740 (0) |41 (-)
Almond0 (0) |0 (0) |46 (98M6 (-)
Total [101 {43 (-) |47 (-) | 191 (89)
Table 6. Contingency table for the 10-best
lidar-derived parameters plus I, R, G
multitemporal channels of the DMC.

DMC data has also been analysed separately of lidahe following tests, only the lidar CHM image
has been employed during the segmentation phaggaréteg the pixel size, no improvement was found
using DMC images with 50 or 25 cm pixel size bus tshould not surprise us (Table 7). The reason is
that virtual images of the DMC camera are a contlnnaof 8 different images: a mosaic of 4 panchro
images plus 4 spectral low resolution images (Hir899). All the CCDs have a pixel size of & but

the lenses of the panchro cameras have a focahleridl20 mm and the spectral cameras have a focal
length of 25 mm. Therefore, by construction, thgohation of the spectral channels is 4.8 times wors



than the resolution of the panchromatic image. Resiag the virtual image to a pixel size of one anet
has not reduced the original resolution of the speéchannels and, on the opposite, using highly- pa
sharpened resolutions (25-50 cm) may degrade twrsp information.

Table 7. Multitemporal DMC data at different pisites, 4 channels.

Olive |Carob| Almonf otal Olive |Carob| Almonf otal
Olive [116 (920 (38) 0 (0 134 |[Olive |116 (9415 (291 (2) (132
Carob 10 (432 (60) 1 (2 43 |Carob |7 (6) | 35 (6%) (0) |[42
Almond 2 (2] 1(2)]51 (98 54 [Almondl (1) |1 (2) |51 (98)53
Total 128 53 52233 (85) ([Total |124 51 52 227 (89)
25cm 50 cm

Olive [Carob| Aimon{Trotal
Olive [93 (9210 (230 (0) [103
Carob |8 (8) | 33 (7|0 (0) |41
Almond0 (0) |0 (0) |47 (L0®y7
Total |101 |43 47 191 (91)
100 cm

Infrared channel was decisive to detect carobstlamanatching rate ranged from 60% without IR to 74%
when IRC was used (table 8). However, blue chaisrieiportant to reduce confusion between olivedree
from carobs in summer imaged'{2poch, table 8).

Table 8. Contingency tables for DMC visible chasn®GB) and IRC

Olive [Carob| Aimonfiotal Olive [Carob| Aimon{Total
Olive |78 (7917 (40[1 (2) [96 Olive [85 (86)L3 (31)0 (0) |98
Carob |18 (1§24 (57)0 (0) |42 Carob |14 (1429 (69)0 (0) |43
Aimond3 (3) [1 (2) | 46 (9860 Almondo (0) [0 (0) |47 (10¢)7
Total [99 [42 |47 188 (7P) [Total [99 [42 147 [ 188(8p)
DM C 100 cm 1% epoch, RGB DM C 100 cm 1% epoch, IRC

Olive [Carob| Aimonfiotal Olive [Carob] Almondotal
Olive [92 (9118 (42]3 (6) [113 Olive |83 (824 (573 (6) |110
Carob |7 (7) | 18 (419 (13) |31 Carob |11 (13}2 (29§ (13) |29
Almond?2 (2) |7 (16)] 38 (817 Almond7 (7) |6 (14)] 38 (81)p1
Total [101 [43 |47 191 (77) [Total [101 [42 |47 190 (70)
DM C 100 cm 2™ epoch, RGB DM C 100 cm 2™ epoch, IRC

Olive [Carob| Aimonfiotal Olive [Carob| AlmonfTotal
Olive [89 (90J15 (362 (4) [106 Olive |94 (9311 (260 (0) |105
Carob |8 (8) | 25 (61) (0) |33 Carob |7 (7) | 32 (749 (0) |39
Almond2 (2) [2 (5) | 45 (96}49 Almondo (0) [0 (0) |47 (10§37
Total [99 [42 |47 188 (8p) [Total [101 [43 [47 [ 191 (9p)
DM C 100 cm both epochs, RGB DM C 100 cm both epochs, IRC

Results from only one epoch were poorer for oliee$ than those obtained from multitemporal images
(tables 7 & 9) but winter images have been critioaliscriminate almond trees.

Table 9. Contingency tables for DMC (all channdisgether)

Olive [ Carob{Almond| Total Olive [ Carob{AiImond Total
Olive [83 (84)9 (21)] 0(0) | 92 Olive |85 (84)L8 (42) 5 (11)] 108
Carob|16 (1683 (79) 0 (0) 49 Carob| 7 (7) |21 (495 (11)] 33

Aimond o (0)| 0 (0)] 47 (100) 47 Almond 9 (9) | 4 (9)]| 37 (79) 50
Total 99 42 47 188 (87) Total 101 43 47 191 (75)

DM C 100 cm 1% epoch DM C 100 cm 2™ epoch




Conclusions

The height and crown area derived from lidar argand agreement with field-measured values taking
into account that the lidar point density that wasployed in this study was low.

Taking into account the 15 lidar-derived parametelise trees were correctly identified in 92% bgt
cases but for the other species the success ratdesm than 70%. The discrimination between species
achieved a maximum with 10 variables, being p16, grid p35 the more interesting percentiles. Wigh th
employed parameters and point density, lidar wasenough to discriminate species but lidar results
cannot be considered bad. There was an improveonethte rates for carob and almond trees when using
the best 10 lidar variables plus multitemporal IB&a. The change for the olive trees was very small
because they were well detected with lidar dataaalé\nyway, the results with only DMC were similar
or even better.

The lidar height has allowed individualizing theds with high reliability probably because the dreere

well isolated in the field. The combination of lidaith multispectral images has simplified the gsé
avoiding confusion between trees and other covétls similar spectral response like grass or shrubs.
Moreover, the tree segmentation allows concentyatiire analysis on the crowns and to treat them as
independent entities.

Regarding the geometric registering of the imatiess)idar derived CHM has been decisive to redtiég
images from different epochs or different sensoegping a correct overlap of the crowns. This
rectification is necessary at high spatial resohsi

Multitemporal images are required to properly disimate the tree species and the epochs of eagbysur
must be carefully chosen taking into account thecks to be studied. Some dates are critical taitobt
good results with some species.
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